skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Lina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Climate extremes cause significant winter wheat yield loss and can cause much greater impacts than single extremes in isolation when multiple extremes occur simultaneously. Here we show that compound hot-dry-windy events (HDW) significantly increased in the U.S. Great Plains from 1982 to 2020. These HDW events were the most impactful drivers for wheat yield loss, accounting for a 4% yield reduction per 10 h of HDW during heading to maturity. Current HDW trends are associated with yield reduction rates of up to 0.09 t ha−1per decade and HDW variations are atmospheric-bridged with the Pacific Decadal Oscillation. We quantify the “yield shock”, which is spatially distributed, with the losses in severely HDW-affected areas, presumably the same areas affected by the Dust Bowl of the 1930s. Our findings indicate that compound HDW, which traditional risk assessments overlooked, have significant implications for the U.S. winter wheat production and beyond.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    Deriving diverse compound libraries from a single substrate in high yields remains to be a challenge in cycloparaphenylene chemistry. In here, a strategy for the late‐stage functionalization of shape‐persistent alkyne‐containing cycloparaphenylene has been explored using readily available azides. The copper‐free [3+2]azide‐alkyne cycloaddition provided high yields (>90 %) in a single reaction step. Systematic variation of the azides from electron‐rich to ‐deficient shines light on how peripheral substitution influences the characteristics of the resulting adducts. We find that among the most affected properties are the molecular shape, the oxidation potential, excited state features, and affinities towards different fullerenes. Joint experimental and theoretical results are presented including calculations with the state‐of‐the‐art, artificial intelligence‐enhanced quantum mechanical method 1 (AIQM1).

     
    more » « less